Qbox400
Modular Deposition System

Features
- Front-loading box style chamber
- CF mounting ports for versatility
- Confocal port design for deposition sources
- Analysis, load-lock and view ports
- Multiple sample manipulation options including rotation, heating, cooling, RF bias, and DC bias
- Wide range of pump configurations available
- Deposition source options include high-rate e-beam, low-rate (high accuracy) e-beam, DC and RF sputtering, thermal, K-cell, nanoparticle deposition and oxide sources.

Applications
- Anti-reflection coatings
- Oxide and dielectric materials deposition
- Nanostructured films
- Multilayer deposition processes
- Optical coatings
- Device Metalization
- Nanometer to micrometer film deposition
Chamber configuration

The QBox 400 is a high vacuum, front loading box style deposition chamber that is engineered for easy access to all components of the system to provide rapid maintenance and loading cycles. The chamber is outfitted with all conflat flanges for easy instrument integration. All deposition source ports are in a confocal arrangement to optimize deposition uniformity and coverage.

The chamber construction consists of all internal welds. The internal surfaces can be polished to minimize surface area and maximize vacuum performance.

System evacuation

The QBox 400 is typically outfitted with a 300l/s turbo pump that is backed by a dry scroll pump. This combination allows for the system to maintain a base vacuum of 2×10^{-7} torr. Other pumping configurations are available on request.

A full range gauge is implemented to the deposition system to provide vacuum conditions feedback at all times.

Sample loading

The QBox 400’s large access door allows the user to quickly place the substrate on the stage by hand quickly and easily. This feature allows for substrates with abnormal features and shapes as well as multi-sample planetary configurations to be loaded.

An optional sample introduction load-lock can be configured to the deposition chamber. This allows for the base vacuum to be maintained in the growth chamber while a sample is loaded. The load-lock has an isolation gate valve that allows for the load-lock to be vented to atmosphere while the main chamber is still under vacuum. A quick access door allows the user to place the sample upon the magnetically coupled transfer arm. Once the load-lock is sealed and pumped to equal vacuum of the main chamber, the gate valve is opened and the transfer arm brings the sample into position to be mounted to the stage.

Process monitoring

The various analysis ports on the QBox 400 allow for in-situ process monitoring to be performed. A quartz crystal deposition monitor (QCM) is often integrated to the system for calibration purposes. When placed on a linear translator, the QCM can be placed directly below the substrate for calibration, then pulled out of the deposition path during the production process. This increases the life span of the crystal as well as ensuring they will not shadow the deposition.

Other process monitoring tools such as ellipsometry, reflectometry, pyrometry, and residual gas analysis can be utilized in the QBox 400.

Automation

A comprehensive computer automation package is available for the QBox400 deposition system. The Windows based software controls all aspects of the system. The software is pre-programmed with automatic pump down and vent sequences. Recipe driven processes can be implemented for highly repeatable results. Logging features keep track of all process parameters that can be analyzed by the researcher following the process.
E-beam Sources

The QUAD-EV series e-beam evaporators can be integrated on the QBox400 system to provide precision deposition of almost any material. Excellent for films with thicknesses of around 200nm or less, the QUAD-EV e-beams include integrate flux monitoring for precision control and real-time feedback control of the source. The QUAD-EV source can be integrated to almost any standard source port.

High power (multi kW) e-beam evaporators can be installed in the QBox400 for high deposition rate application. Single and multipocket sources with be utilized. Beam rastering, rate monitoring, and PID control are available to enhance operational functionality.

Sputtering sources

The CUSP series magnetron sputter sources can be mounted to the standard DN100CF flanges located on the base of the QBox400. Available in 1, 2, or 3 inch target configurations, the CUSP sources are engineered for high performance processing. The all metal construction allows for the sources to be baked as well as ensure the highest quality vacuum. The CUSP sources can be used with both RF and DC power and includes a titlable head option.

Nanoparticle Deposition

Our Nanogen nanoparticle source can be installed on the chamber to allow controlled nanoparticle deposition onto the sample. Nanoparticles can be generated from any metal as well as from many compound materials (oxides, nitrides, carbides...), alloys, and core-shell coated particles.

The size of the particles is highly controlled - mean between -0.5nm and 20nm with a narrow size distribution of +/- 15%.

Oxides/Nitrides

For the growth of oxides or nitrides at low pressure, it is often necessary to use a more reactive form of oxygen (and certainly nitrogen) to form oxides or nitride compounds. Mantis Deposition manufactures RF plasma sources which are used to generate beams of highly reactive atomic oxygen or nitrogen. These can be incorporated to act alongside conventional metal deposition sources to grow high-quality compound layers. Note, these sources require a chamber pressure lower than 2 x 10^-3 mbar to operate.

Thermal Sources

Thermal sources of most types (knudsen cells, filament evaporators, boat-evaporators...) can be added. K-cells will fit through standard ports and optional, water-cooled cross-contamination shields can be added around K-cells to improve overall system purity. Thermal evaporation boats can be installed in the base with adapter flanges. These can be quickly replenished through access from the top-lid or, if a load-lock is used, by removing the adapter flange.
Chamber Dimensions
Width: 400mm
Height: 450mm
Depth: 400mm

Manipulator
Sample Entry
Options:
- Rotation, heating, bias

Optional Load-Lock

Sample Entry
Front-loading

Deposition Ports
- Sputter source
- E-beam Sources
- K-cells
- Thermal sources
- Oxide sources

Pumping
300 ls⁻¹ upwards

Note - analysis and service ports not shown

Standard Configuration
<table>
<thead>
<tr>
<th>Top Flange</th>
<th>NW200CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side ports</td>
<td>3 x NW100CF, 1 x NW150CF</td>
</tr>
<tr>
<td>Deposition ports</td>
<td>5 x NW100CF, 4 x NW35CF</td>
</tr>
<tr>
<td>Pumping</td>
<td>300ls⁻¹ to 1000 ls⁻¹ options</td>
</tr>
<tr>
<td>Sample loading</td>
<td>Front door.</td>
</tr>
<tr>
<td>Base Pressure</td>
<td>2 x 10⁻⁷ (standard)</td>
</tr>
<tr>
<td>Frame</td>
<td>Low footprint frame on transport casters</td>
</tr>
</tbody>
</table>

Options
<table>
<thead>
<tr>
<th>Manipulator</th>
<th>Rotation, heating, bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Entry</td>
<td>Load-Lock</td>
</tr>
<tr>
<td>Sample size</td>
<td>1”, 2”, 3”, 4”, 6”</td>
</tr>
<tr>
<td>Film monitoring</td>
<td>QCM, Ellipsometry</td>
</tr>
<tr>
<td>Pumping</td>
<td>Cryopump</td>
</tr>
<tr>
<td>Automation</td>
<td>Full recipe-driven process automation</td>
</tr>
</tbody>
</table>

Specifications
Manipulator
Sample Entry
Sample size
Film monitoring
Pumping
Automation

Chamber Dimensions
- Width: 400mm
- Height: 450mm
- Depth: 400mm

MANTIS Deposition Ltd
2 Goodson Industrial Mews
Wellington Street
Thame, Oxfordshire
OX9 3BX
UK
Tel (UK): +44 1844 260160
Fax (UK): +44 1844 260421
sales@mantisdeposition.com